Advertisement

New quantum computer chip uses sounds waves to store data

By Brooks Hays
A diagram shows a superconducting qubit coupled to sound wave particles inside a sapphire crystal, while the inset features the energy spectrum of phonons measured using the quantum information. The new quantum computing device allows for the mechanical measurement of quantum data. Photo by Yale University
A diagram shows a superconducting qubit coupled to sound wave particles inside a sapphire crystal, while the inset features the energy spectrum of phonons measured using the quantum information. The new quantum computing device allows for the mechanical measurement of quantum data. Photo by Yale University

Sept. 22 (UPI) -- Scientists have designed a new quantum computer chip that uses sound waves to store and convert quantum data.

The device uses a bulk acoustic wave resonator to store, move and translate quantum information embedded in qubits, or quantum bits. The new, simple and more efficient method for quantum data storage could accelerate quantum computing technology.

Advertisement

The qubit is a two-state quantum-mechanical system, or system with two possible states -- a particle that can exist simultaneously in two different forms. The phenomenon is called qauntum superposition.

When one quantum state is manipulated, the manipulation can be measured in the other quantum state, enabling the teleportation of information.

The new device uses qubits made from superconducting aluminum and a sapphire wafer resonator, which features two sound wave-reflecting mirrors.

"We found that even a single quantum particle of sound, or a phonon, can live for a very long time when it bounces back and forth between these mirrors," Yiwen Chu, a postdoctoral associate at Yale University, said in a news release. "It can also be coupled to a superconducting qubit made on the surface of the sapphire using a disk of aluminum nitride, which converts acoustic energy into electromagnetic energy and vice versa."

Advertisement

By bouncing quantum states back and forth between the qubit and the mechanical resonator, researchers can more easily manipulate and measure quantum information.

"Mechanical resonators can be used to store quantum information generated by superconducting qubits in a more compact and robust way," Chu said. "They can also be used to interface superconducting circuits to other types of quantum objects, such as visible or infrared light. It would potentially allow us to create quantum information in our circuits and then transmit it over long distances using light."

Researchers described their quantum version of an integrated circuit in a new paper, published this week in the journal Science.

Latest Headlines