Advertisement

New study confirms possibility of fifth force of nature

"This dark sector force may manifest itself as this protophobic force we're seeing as a result of the Hungarian experiment," researcher Jonathan Feng said.

By
Brooks Hays

IRVINE, Calif., Aug. 15 (UPI) -- New research confirms the science behind a previous study suggesting the existence of a fifth force of nature.

Last year, a group of Hungarian researchers reported the possible discovery of a new type of subatomic particle. Scientists identified a radioactive decay anomaly among the results of their particle acceleration experiments.

Advertisement

The anomaly suggested the presence of light particle 30 times heavier than an electron. The goal of those experiments was to find dark matter, but scientists weren't sure exactly what kind of particle they'd observed.

"The experimentalists weren't able to claim that it was a new force," Jonathan Feng, professor of physics and astronomy at the University of California, Irvine, said in a press release. "They simply saw an excess of events that indicated a new particle, but it was not clear to them whether it was a matter particle or a force-carrying particle."

RELATED Scientists observe electrons in a metal behaving like a fluid

Feng and his UCI colleagues recently reviewed the 2015 results, as well as findings from similar studies. The new analysis confirms the potential discovery of a fifth force of nature.

"If true, it's revolutionary," said Feng. "For decades, we've known of four fundamental forces: gravitation, electromagnetism, and the strong and weak nuclear forces. If confirmed by further experiments, this discovery of a possible fifth force would completely change our understanding of the universe, with consequences for the unification of forces and dark matter."

Advertisement

The original researchers weren't sure whether what they were looking at was a matter particle or a force-carrying particle. The new analysis suggests the novel subatomic particle is neither a matter particle nor a dark photon. A force-carrying particle is the most likely explanation for the radioactive decay anomaly, Feng and his colleagues argue.

RELATED The Big Bang may have actually been a 'Big Bounce'

In their new study, soon to be published in the Physical Review Letters, researchers suggest the mystery particle may be a "protophobic X boson."

"There's no other boson that we've observed that has this same characteristic," said co-author Timothy Tait. "Sometimes we also just call it the 'X boson,' where 'X' means unknown."

Tait and Feng think the particle may suggest a fifth force of nature as well as a dark energy and matter.

RELATED New study implies existence of fifth force of nature

Some physicists suggest a separate sphere of physics, a contrast to the standard model of physics where dark matter and dark forces reside. These two spheres or sectors may interact with each other. The new mystery particle may be an example of this interaction.

"This dark sector force may manifest itself as this protophobic force we're seeing as a result of the Hungarian experiment," Feng said. "In a broader sense, it fits in with our original research to understand the nature of dark matter."

Advertisement

RELATED Bump in LHC data is not a new particle, scientists announce

Latest Headlines